Menu Close
Director of PRIISM; Professor of Applied Statistics, New York University

Jennifer Hill develops and evaluates methods that help us answer the causal questions that are vital to policy research and scientific development. In particular she focuses on situations in which it is difficult or impossible to perform traditional randomized experiments, or when even seemingly pristine study designs are complicated by missing data or hierarchically structured data. Most recently Hill has been pursuing two intersecting strands of research. The first focuses on Bayesian nonparametric methods that allow for flexible estimation of causal models and are less time-consuming and more precise than competing methods (e.g. propensity score approaches). The second line of work pursues strategies for exploring the impact of violations of typical causal inference assumptions such as ignorability (all confounders measured) and common support (overlap). Hill has published in a variety of leading journals including Journal of the American Statistical Association, Statistical Science, American Political Science Review, American Journal of Public Health, and Developmental Psychology. Hill earned her PhD in Statistics at Harvard University in 2000 and completed a post-doctoral fellowship in Child and Family Policy at Columbia University's School of Social Work in 2002.

Hill is also the Co-Director of the Center for Practice and Research at the Intersection of Information, Society, and Methodology (PRIISM) and Co-Director of and the Master's of Science Program in Applied Statistics for Social Science Research (A3SR). The A3SR program has a new concentration in Data Science for Social Impact! As far as we know this is the first degree granting program in Statistics or Data Science for Social Impact or Social Good in the world!

Selected Publications
Hill, J. (2011) “Bayesian nonparametric modeling for causal inference,” Journal of Computational and Graphical Statistics, 20(1): 217-240.
Hill, J. and Y. Su (2013) “Assessing lack of common support in causal inference using Bayesian nonparametrics: implications for evaluating the effect of breastfeeding on children's cognitive outcomes,” Annals of Applied Statistics, 7(3): 1386-1420.
Kern, H., Stuart, E., Hill, J. and D. Green (2016) “Assessing methods for generalizing experimental impact estimates to target samples,” Journal of Research in Educational Effectiveness, 9(1): 103-127.
Middleton, J., Scott, M., Diakow, R. and J. Hill (2016) “Bias Amplification and Bias Unmasking” Political Analysis, 24(3): 307-323. (Winner of Society for Political Methodology's Miller Prize for the best article appearing in Political Analysis in 2016)
Dorie, V., Hill, J., Shalit, U., Scott, M. and D. Cervone (2018) “Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition,” eprint arXiv:1707.02641. (This paper has also been accepted for publication with discussion and rejoinder in Statistical Science)


  • –present
    Director of PRIISM; Professor of Applied Statistics, New York University