Menu Close

Nikku Madhusudhan

Reader in Astrophysics and Exoplanetary Science, University of Cambridge

Nikku Madhusudhan is a Reader in Astrophysics and Exoplanetary Science at the Institute of Astronomy of the University of Cambridge. He pursued his undergraduate studies in Engineering at the Indian Institute of Technology, Banaras Hindu University, India. He moved to the Massachusetts Institute of Technology (MIT) where he obtained a master degree in engineering in 2004 and a PhD in Physics (astrophysics) in 2009. He then pursued postdoctoral research at MIT (2009-2010), Princeton University (2010-2011), and Yale University (2012-2013) where he was the Yale Center for Astronomy and Astrophysics Prize Postdoctoral Fellow. In October 2013, he joined the University of Cambridge as Lecturer, and was promoted in 2017 to Reader. He was awarded the prestigious Bappu Gold Medal in Astrophysics for 2014 by the Astronomical Society of India and the 2016 Young Scientist Medal of the International Union of Pure and Applied Physics Commission on Astrophysics. His research interests span a wide range of theoretical topics in exoplanetary science, including exoplanetary atmospheres, interiors, and planetary formation.

Nikku Madhusudhan has made pioneering contributions to exoplanetary science which include precise chemical characterization of exoplanetary atmospheres, detailed studies of atmospheric and interior processes, and using exoplanetary compositions as tracers of their formation mechanisms. His work has led to several new insights into exoplanetary atmospheres, including constraints on non-equilibrium chemistry, temperature inversions, molecular abundances, and C/O ratios. His recent studies have led to major advances in exoplanetary science in three frontier areas: (1) high-precision chemical characterisation of exoplanetary atmospheres using state-of-the-art observations, (2) detailed constraints on exoplanetary atmospheric processes, and (3) new approaches to constrain exoplanetary formation and migration pathways using their atmospheric abundances.

Research Interests:
Atmospheres, interiors, and formation mechanisms of extrasolar planets
Radiative transfer, planetary chemistry, and atmospheric retrieval methods for exoplanets
Internal structure modeling of super-Earths, mass-radius relations, and geophysical processes
Constraints on exoplanetary formation mechanisms using their atmospheric chemical abundances
Optimal planning of observations with large facilities to characterize exoplanetary atmospheres

Experience

  • –present
    Reader in Astrophysics and Exoplanetary Science, University of Cambridge