Whgx5n9z 1397051761

The science of anatomy is undergoing a revival

Your inner self. pureblacklove, CC BY-NC-SA

The science of anatomy is undergoing a revival

Your inner self. pureblacklove, CC BY-NC-SA

Only two decades ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject. That hasn’t happened. Instead the science of anatomy has undergone a renaissance lately, sparking renewed interest not just among researchers but also the public.

I may be biased, but examples from my own work, which is a small part of anatomical research, might showcase what I mean. In 2011, my team found out found why elephants have a false “sixth toe”, which had remained a mystery since it was first mentioned in 1710. Last year, with University of Utah researchers, I helped reveal that crocodiles have “bird-like” lungs in which air flows in a one-way loop rather than tidally back and forth as in mammalian lungs. Subsequent work by those colleagues has shown that monitor lizards do this, too.

Elephant fore (left) and hind (right) feet in side view, showing the false “sixth toe” (in white; labelled pp or ph) in the back of the foot. Julia Molnar

Researchers have also solved the mystery of how monitor lizards got venom glands. They have discovered that lunge-feeding whales have a special sense organ in their chin that helps them engulf vast amounts of food. And like the whales, it seems crocodiles have sense organs in their jaws, which can detect vibrations in the water. Anatomy has even found gears in nature. Turns out that leafhopper insects have tiny gears in their legs that help in making astounding and precise leaps.

If the scientific examples weren’t enough, there are many from popular TV. British viewers have had the delights of anatomy served to them in a BBC TV series called Secrets of Bones, which concluded in March. American viewers are getting anatomical insights in Your Inner Fish, an ongoing TV series on PBS.

Anatomy’s highs and lows

Apart from an anomalous period in the 20th century, such discoveries have always captivated scientists and the public. From the 16th century until the 19th century, human anatomy was one of the top research fields. Anatomist Jean Francois Fernel, who invented the word “physiology”, wrote in 1542:

Anatomy is to physiology as geography is to history; it describes the theatre of events.

This analogy justified the study of anatomy for many early scientists, some of whom also sought to understand it to bring them closer to understanding the nature of God. Anatomy gained impetus, even catapulting scientists such as Thomas Henry Huxley (“Darwin’s bulldog”) into celebrity status, from the realisation that organisms had a common evolutionary history and thus their anatomy did too. Comparative anatomy became a central focus of evolutionary biology.

Rembrandt, too, couldn’t resist the revolution of anatomy. vivacomopuder, CC BY-NC-SA

But then something happened to anatomical research that can be hard to put a finger on. Slowly anatomy became a field that was scoffed at as outmoded, irrelevant, or just “solved”. Nothing important seemed left for anatomists to discover.

As a graduate student in the 1990s, I remember encountering this attitude. This apparent eclipse of anatomy accelerated with the ascent of genetics and the flourishing of techniques to study molecular and cellular biology.

One could argue that molecular and cellular biology are anatomy to some degree, especially for single-celled organisms and viruses. But today anatomy at the whole organ, organism or lineage level revels in a renaissance that deserves inspection and reflection on its own terms.

Perhaps the other reason is that most people think we now know human anatomy quite well. But that is not so true. For example, last year Belgian scientists rediscovered the anterolateral ligament of the human knee, overlooked since 1879. They described it, and its importance for how our knees function, in novel detail, and a lot of media attention was drawn to this realisation that there are some things we still don’t understand about our own bodies.

High-tech anatomy

Vertebrae (backbone elements) of the early amphibious animal Ichthyostega. Julia Molnar

A huge part of this resurgence of anatomical science is technology, especially imaging techniques – we are no longer simply limited to the dissecting knife and light microscope as tools. Digital technology such as three-dimensional imaging combined with computer graphics are allowing researchers to look at body parts in new ways. For instance, using such techniques, we were able to rewrite the evolution of the backbone of early land animals called tetrapods.

Science moves forward the fastest with the development of new tools, and anatomy is a great example of that. Consider this recent example from researchers at the University of Bristol. They found that by using a simple solution that stains animal tissue they can get three-dimensional scans using CT (computed tomography), which is a much more easy to find imaging tool than the more powerful, more expensive MRI (magnetic resonance imaging). This advance enabled them to do “digital dissections”.

Buzzard head anatomy in 3D with new imaging tools. Stephan Lautenschlager