Hadiah Nobel Fisika 2022 memberikan penghargaan kepada tiga ilmuwan yang memberikan kontribusi terobosan dalam memahami salah satu fenomena alam yang paling misterius: quantum entanglement.
Dalam istilah yang paling sederhana, quantum entanglement merujuk pada aspek-aspek dari satu partikel dari sepasang partikel yang terjerat bergantung pada aspek-aspek dari partikel lainnya, tidak peduli seberapa jauh jaraknya atau apa yang ada di antara keduanya. Partikel-partikel ini dapat berupa, misalnya, elektron atau foton, dan aspeknya dapat berupa keadaan partikel tersebut, seperti apakah partikel tersebut berputar ke satu arah atau ke arah lain.
Bagian yang aneh dari quantum entanglement adalah ketika kita mengukur sesuatu tentang satu partikel dalam pasangan yang saling terkait, kita segera mengetahui sesuatu tentang partikel lainnya, bahkan jika mereka terpisah jutaan tahun cahaya. Hubungan aneh antara dua partikel ini terjadi seketika, tampaknya melanggar hukum dasar alam semesta. Albert Einstein secara terkenal menyebut fenomena ini sebagai “aksi menyeramkan dari kejauhan”.
Setelah menghabiskan waktu selama dua dekade melakukan eksperimen yang berakar pada mekanika kuantum, saya mulai menerima keanehannya. Berkat instrumen yang semakin tepat dan dapat diandalkan serta karya pemenang Nobel tahun ini, yaitu Alain Aspect, John Clauser, dan Anton Zeilinger, para ahli fisika sekarang mengintegrasikan fenomena kuantum ke dalam pengetahuan mereka tentang dunia dengan tingkat kepastian yang luar biasa.
Namun, bahkan hingga tahun 1970-an, para peneliti masih terpecah belah mengenai apakah quantum entanglement merupakan fenomena yang nyata. Dan untuk alasan yang bagus - siapa yang berani menentang Einstein yang hebat, siapa pula yang meragukannya? Butuh pengembangan teknologi eksperimental baru dan peneliti yang berani untuk akhirnya menguak misteri ini.
Quantum superposition: ada dalam beberapa keadaan sekaligus
Untuk benar-benar memahami seramnya quantum entanglement, penting untuk terlebih dahulu memahami quantum superposition (superposisi kuantum). Superposisi kuantum adalah gagasan bahwa partikel berada dalam beberapa keadaan sekaligus. Ketika pengukuran dilakukan, seolah-olah partikel memilih salah satu keadaan dalam superposisi.
Sebagai contoh, banyak partikel memiliki atribut yang disebut spin yang diukur sebagai “naik” atau “turun” untuk orientasi tertentu dari penganalisis. Namun, sampai kita mengukur spin sebuah partikel, partikel tersebut secara simultan berada dalam superposisi spin up dan spin down.
Ada probabilitas yang melekat pada setiap keadaan, dan dimungkinkan untuk memprediksi hasil rata-rata dari banyak pengukuran. Kemungkinan sebuah pengukuran menjadi naik atau turun bergantung pada probabilitas ini, tetapi tidak dapat diprediksi.
Meskipun sangat aneh, beberapa perhitungan dan sejumlah besar eksperimen telah menunjukkan bahwa mekanika kuantum dengan tepat menggambarkan realitas fisik.
Quantum entanglement: dua partikel yang terjerat
Hal yang menyeramkan dari quantum entaglement muncul dari realitas superposisi kuantum, dan jelas bagi para pendiri mekanika kuantum yang mengembangkan teori ini pada tahun 1920-an dan 1930-an.
Untuk membuat partikel terjerat, pada dasarnya kita memecah sebuah sistem menjadi dua, di mana jumlah bagian-bagiannya diketahui. Sebagai contoh, kita bisa membagi sebuah partikel dengan spin nol menjadi dua partikel yang memiliki spin berlawanan sehingga jumlah keduanya adalah nol.
Pada tahun 1935, Albert Einstein, Boris Podolsky, dan Nathan Rosen menerbitkan sebuah makalah yang menggambarkan sebuah eksperimen pemikiran yang dirancang untuk mengilustrasikan ketidakmasukakalan dari quantum entanglement yang menantang hukum dasar alam semesta.
Sebuah versi sederhana dari eksperimen pemikiran ini yang dikaitkan dengan David Bohm, mempertimbangkan peluruhan sebuah partikel yang disebut pi meson. Ketika partikel ini meluruh, ia menghasilkan elektron dan positron yang memiliki spin berlawanan dan bergerak menjauh satu sama lain. Oleh karena itu, jika spin elektron diukur naik, maka spin positron yang terukur hanya bisa turun, dan sebaliknya. Hal ini berlaku meskipun partikel-partikel tersebut terpisah miliaran mil.
Hal ini akan baik-baik saja jika pengukuran spin elektron selalu naik dan spin positron yang diukur selalu turun. Tetapi karena mekanika kuantum, spin setiap partikel adalah sebagian naik dan sebagian turun sampai diukur. Hanya ketika pengukuran terjadi, keadaan kuantum spin “runtuh” menjadi naik atau turun - seketika meruntuhkan partikel lainnya ke spin yang berlawanan. Hal ini tampaknya menunjukkan bahwa partikel-partikel tersebut berkomunikasi satu sama lain melalui suatu cara yang bergerak lebih cepat daripada kecepatan cahaya. Tetapi menurut hukum fisika, tidak ada yang bisa bergerak lebih cepat daripada kecepatan cahaya. Tentunya keadaan terukur dari satu partikel tidak dapat secara instan menentukan keadaan partikel lain di ujung alam semesta?
Fisikawan, termasuk Einstein, mengajukan sejumlah interpretasi alternatif tentang quantum entanglement pada tahun 1930-an. Mereka berteori bahwa ada beberapa properti yang tidak diketahui - dijuluki variabel tersembunyi - yang menentukan keadaan partikel sebelum pengukuran. Namun pada saat itu, para fisikawan tidak memiliki teknologi atau definisi pengukuran yang jelas yang dapat menguji apakah teori kuantum perlu dimodifikasi untuk menyertakan variabel tersembunyi.
Memfalsifikasi sebuah teori
Butuh waktu hingga tahun 1960-an sebelum ada petunjuk untuk mendapatkan jawabannya. John Bell, seorang fisikawan brilian asal Irlandia yang tidak sempat menerima hadiah Nobel, merancang sebuah skema untuk menguji apakah gagasan tentang variabel tersembunyi itu masuk akal.
Bell menghasilkan sebuah persamaan yang sekarang dikenal sebagai bell’s inequality yang selalu benar - dan yang hanya benar - untuk teori-teori variabel tersembunyi, dan tidak selalu benar untuk mekanika kuantum. Dengan demikian, jika bell’s inequality ditemukan tidak memuaskan dalam eksperimen dunia nyata, teori variabel tersembunyi lokal dapat dikesampingkan sebagai penjelasan untuk quantum entanglement.
Eksperimen para pemenang Nobel 2022, terutama yang dilakukan oleh Alain Aspect, adalah yang pertama menguji bells inequality. Eksperimen ini menggunakan foton yang terjerat, bukan pasangan elektron dan positron, seperti pada banyak eksperimen lainnya. Hasilnya secara meyakinkan mengesampingkan keberadaan variabel tersembunyi, sebuah atribut misterius yang akan menentukan keadaan partikel yang terjerat. Secara kolektif, ini dan banyak tindak lanjut eksperimen telah membuktikan mekanika kuantum. Objek-objek dapat dikorelasikan dalam jarak yang sangat jauh dengan cara yang tidak dapat dijelaskan oleh fisika sebelum mekanika kuantum.
Yang terpenting, tidak ada konflik dengan relativitas khusus, yang melarang komunikasi yang lebih cepat dari cahaya. Fakta bahwa pengukuran pada jarak yang sangat jauh berkorelasi tidak menyiratkan bahwa informasi ditransmisikan di antara partikel-partikel. Dua pihak yang berjauhan melakukan pengukuran pada partikel-partikel yang saling terkait tidak dapat menggunakan fenomena ini untuk menyampaikan informasi lebih cepat dari kecepatan cahaya.
Saat ini, para fisikawan terus meneliti quantum entanglement dan menyelidiki potensi aplikasi praktis. Meskipun mekanika kuantum dapat memprediksi probabilitas pengukuran dengan akurasi yang luar biasa, banyak peneliti tetap skeptis bahwa mekanika kuantum memberikan gambaran yang lengkap tentang realitas. Namun, satu hal yang pasti. Masih banyak yang harus dikatakan tentang dunia mekanika kuantum yang misterius.
Demetrius Adyatma pangestu dari Universitas Bina Nusantara menerjemahkan artikel ini dari bahasa Inggris