Dr. Erath’s research interests encompass the field of fluid mechanics, with a particular focus on the laryngeal aerodynamics of voiced speech. Voiced speech is produced by complex fluid-structure-acoustic interactions within the larynx. A more complete understanding of this nonlinear problem is critical for accurate diagnosis and treatment of vocal pathologies that disrupt the normal speech process. Dr. Erath’s work is focused on both experimental investigations and computational modeling of the speech process.
A primary research thrust is to identify the viscous flow behavior that is produced in the unsteady, pulsatile environment of voiced speech. This is accomplished by applying experimental fluid mechanics techniques (e.g. particle image velocimetry, laser Doppler anemometry, etc.) to capture the fluid dynamics in synthetic, life-size, self-oscillating models of the vocal folds. These measurements are performed in tandem with high-speed imagery that tracks the dynamics of the vocal fold structure. Diseased speech conditions are also replicated in order to understand the disruption of the energy-exchange process due to common vocal pathologies.