Menu Close

Matthew Addicoat

Senior Lecturer in Functional Materials, Nottingham Trent University

Dr. Addicoat’s research interests lie in computational combinatorial chemistry – that is using computer calculations to search and sort many thousands or even millions of possible chemical compounds, before any of them are synthesised. In particular, Dr. Addicoat is interested in applying these methods to materials chemistry, where the following three types of materials are of current interest:

Molecular Framework Materials – Molecular Framework Materials, such as Metal Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs) and Zeolitic Imidazolate Frameworks (ZIFs) are highly porous materials made by stitching together various metal or organic “nodes” (corners) with organic “linkers” (edges) to create 2D and 3D frameworks. These materials typically have high surface area, tuneable pore size and changeable functional groups leading to possible applications in fields such as gas adsorption and separation, catalysis and sensing. Given the hundreds of different networks and the effectively infinite number of molecules that can be used to create a framework material, identifying the optimum framework by chance is highly unlikely.
Ionic Liquids – Ionic liquids (ILs) are liquids comprised entirely of ions, differentiated from typical ionic salts by having melting points below 100 oC. IL melting points are low because electrostatic interactions between component ions are weaker, and crystal lattice packing is hindered. This is typically achieved by making at least one of the ions large, unsymmetrical and organic. The physicochemical properties of ILs can be tuned through a judicious choice of ions. This flexibility has driven wide-ranging research into their use as solvents in green chemistry, energy and electrochemical applications, pharmaceuticals and lubricants.
Transition Metal Clusters – Small clusters of transition metal atoms in the sub-nanometre range have been shown to catalyse a number of environmentally important reactions – e.g. the oxidation of CO and reduction of NO. However, the properties of these clusters are very difficult to predict, and adding or subtracting a single atom can change the reaction rates by several orders of magnitude.

Experience

  • –present
    Senior Lecturer in Functional Materials, Nottingham Trent University