Menu Close

Renovarse o morir: cuando se atasca el sistema de reciclaje cerebral

Las células que componen nuestro cerebro son como pequeñas ciudades. En su interior hay una base, el núcleo, donde están codificadas la identidad y función de la célula en forma de genes y elementos regulatorios.

La información de este núcleo y los estímulos externos determinarán si la célula será una neurona, encargada de transmitir información nerviosa, o pertenecerá al linaje glial, el que se ocupa de acondicionar, facilitar y optimizar el trabajo neuronal. En cualquier caso, los datos codificados en el núcleo determinarán no solo el linaje, sino también el aspecto y la función de la célula.

El producto final de un gen es la proteína, el “ladrillo” básico de la vida. Existe una gran diversidad de proteínas en la célula, y su síntesis y procesamiento dependerá de su destino y ocupación final. Algunas llevarán a cabo una función de soporte estructural en las murallas o membranas celulares; otras participarán en la comunicación entre células, recibiendo, amplificando y enviando señales; y finalmente, algunas se especializarán en el plegamiento, transporte o ruptura de otras proteínas.

Por tanto, las proteínas no solo son las protagonistas principales de la actividad en la ciudad celular, sino también las dianas a intervenir con fármacos en caso de trastorno o enfermedad.

Reciclaje y renovación

El código proteico no es estático, es decir, las proteínas y las estructuras formadas con ellas, como las organelas celulares –mitocondrias, ribosomas, citoplasma…–, no se mantienen durante toda la vida de la célula. Al contrario, ambas se renuevan de forma gradual, como parte del mantenimiento de la maquinaria celular.

Tal renovación es posible debido al envío de estructuras macromoleculares al lisosoma –la “trituradora celular”– mediante un proceso denominado autofagia, palabra que significa “comerse a uno mismo”. Los lisosomas están equipados con ácidos y proteínas que destruyen todo tipo de macromoléculas –moléculas de gran tamaño– celulares, incluyendo grasas, azúcares, material genético y otras proteínas.

Este mecanismo, por tanto, permite la síntesis de nuevas proteínas tras su reciclaje. Por eso es clave en los procesos de mantenimiento y renovación celular en todas las etapas de vida del cerebro.

Problemas con el servicio de calidad

Cuando la trituradora celular falla, se acumulan las proteínas dañadas y otros desechos celulares. Es el desencadenante de las enfermedades de almacenamiento lisosomal, patologías raras que se transmiten por herencia genética. Debido a la importancia de la renovación celular desde edades tempranas, estas dolencias normalmente se manifiestan en la niñez.

Los organismos afectados pierden la capacidad de romper algún tipo de componente celular, normalmente proteínas y grasas con componentes azucarados, lo que facilita su acumulación en los compartimentos de los lisosomas. En consecuencia, se pierde la capacidad de renovación, lo que crea desorden y enfermedad.

Entre las patologías de almacenamiento lisosomal, la enfermedad de Gaucher es la más frecuente. Se hereda por mutaciones (presentes en ambos progenitores) en el gen con las instrucciones para producir la proteína glucocerebrosidasa (GBA). Esto causa una reducción significativa o una falta de actividad de la GBA, que se encarga de destruir grasas azucaradas.

En algunos casos, los desechos de grasa y azúcar se acumulan en células nerviosas, lo que produce un deterioro de las funciones cognitivas, motoras y autónomas (respiración, presión arterial…) cerebrales. Esto se debe principalmente a alteraciones en las conexiones locales o sinapsis neuronales, así como en las estructuras lipídicas que aíslan las prolongaciones neuronales y permiten la transmisión de alta velocidad. Son procesos que dependen del óptimo funcionamiento de las vías de renovación autofágicas y lisosomales.

Una nueva esperanza para el párkinson

En los últimos años se ha descrito una conexión entre la enfermedad de Gaucher y la enfermedad de Parkinson. La mutación de una única copia del gen GBA no es suficiente para producir la primera, pero es el factor de riesgo genético más importante de sufrir párkinson.

Se estima que esta enfermedad afecta a más de 8,5 millones de personas en el mundo, lo que la convierte en el trastorno de movimiento más frecuente. Se desconoce la causa del 85 % de los casos, con la edad como principal factor de riesgo junto con otros factores desencadenantes genéticos y/o ambientales.

Los síntomas motores (temblor, rigidez, dificultades para iniciar movimientos…) son los más frecuentes, pero también puede afectar a funciones cognitivas y autónomas cerebrales, al igual que las enfermedades de almacenamiento lisosomal.

Entre los factores de riesgo genético que contribuyen de forma significativa al desarrollo del párkinson no solo se encuentra, como hemos señalado, la mutación del gen que codifica la proteína GBA, sino también otros genes relacionados con la regulación de las redes autofágicas y lisosomales. Esto refuerza la evidencia de que la alteración de esas vías contribuye a los déficits neurológicos causados por el párkinson esporádico.

La restauración de la función de proteínas relacionadas con la regulación de la trituradora cerebral –y más en concreto la GBA– podrían modificar el inicio y/o la progresión tanto del párkinson como de la enfermedad de Gaucher.

Y aquí podría venir en ayuda el ambroxol, un fármaco mucolítico clásico con capacidad de replegar la proteína GBA mutante. Diferentes investigaciones han mostrado que el ambroxol puede aumentar la actividad destructora de grasas azucaradas por la GBA, mejorando el flujo del tráfico de las redes autofágicas y lisosomales.

Ahora mismo se están haciendo ensayos clínicos para evaluar la eficacia del ambroxol, y en los próximos años sabremos si este esfuerzo de investigación mejorará la calidad de vida de los pacientes y sus familias.

Want to write?

Write an article and join a growing community of more than 182,600 academics and researchers from 4,945 institutions.

Register now