Menu Close
Hayabusa muestreando la superfície de Ryugu. Akihiro Ikeshita/JAXA, CC BY-SA

Las muestras del asteroide Ryugu explican el origen del nitrógeno de la Tierra

La misión Hayabusa 2 de la Agencia Espacial Japonesa (JAXA) trajo a la Tierra material del asteroide Ryugu, y su análisis no ha parado de enriquecer nuestro conocimiento sobre la formación de los planetas rocosos. Un nuevo estudio explica el origen del nitrógeno y otros compuestos volátiles de la Tierra.

El nitrógeno molecular (N₂) es el gas más abundante de la atmósfera terrestre. Constituye el 78,1 % de su masa total, y es el que la hace distinguible de las atmósferas de otros planetas rocosos.

Explicar por qué hay nitrógeno y cómo llegó aquí es, en cierto modo, conocer una de las razones fundamentales por las que existe la vida, dado que forma parte de los elementos esenciales para crearla.

La misión de retorno de muestras desde Ryugu

La misión de retorno de muestras Hayabusa 2 en 2020 marcó un importante hito en la exploración espacial. Hayabusa 2 trajo a la Tierra un cápsula que contenía cinco gramos de material de la superficie del asteroide.

Ryugu es de tamaño kilométrico y rico en carbono. Se asemeja a un raro y sumamente frágil grupo de meteoritos llamados (condritas carbonáceas), similares al meteorito Ivuna.

Ryugu ha sufrido un proceso de meteorización espacial causado por colisiones con micrometeoritos y por la exposición a iones cargados del viento solar.

El asteroide Ryugu, marcando una flecha el lugar exacto desde el cual la sonda Hayabusa 2 trajo las muestras ahora analizadas. JAXA/Hayabusa 2

En el mes de marzo de 2023, tras el análisis de las primeras muestras, los investigadores japoneses publicaron que habían encontrado uracilo. Ahora, la sorpresa es que han podido seguir el rastro del nitrógeno y explicar cómo pudo fijarse en el primeros estadios de formación de la Tierra.

Nitrógeno llegado desde los confines del Sistema Solar

Comprender el transporte del nitrógeno y de otros elementos ligeros es tremendamente complicado, tanto por su volatilidad como por la complejidad de los procesos que experimentan en el espacio interplanetario.

Mediante teledetección, y gracias a misiones como Rosetta al cometa 67P/Churyumov-Gerasimenko, se han encontrado compuestos sólidos de nitrógeno en los cuerpos helados del sistema solar exterior, como las sales de amonio. Algunos de esos compuestos son estables en la región cercana a la Tierra, pero no se habían detectado en los materiales que llegan desde esos cuerpos en forma de partículas de polvo interplanetario y micrometeoritos.

Su relativa ausencia se debe a su volatilidad. Bien porque esos materiales que llegan a la Tierra surgen de una colisión que fragmenta y evapora las fases volátiles, o bien debido a la meteorización espacial o la brusca entrada a hipervelocidad en la atmósfera terrestre. Así, el nitrógeno y otros gases no se habían encontrado hasta ahora en los pequeños cuerpos cercanos a la Tierra.

La acción del agua en Ryugu: formación y alteración de la magnetita

Los materiales que formaron Ryugu estaban hidratados por agua primordial y la alteración acuosa transformó su interior. Unos 50 millones de años antes de formarse la Tierra, el agua ya alteraba ese diminuto asteroide.

Como resultado de ello se formaron minerales hidratados como, por ejemplo, la magnetita que aparece en forma de glóbulos redondeados, formados cuando el agua empapó el asteroide.

Las imágenes de alta resolución de la magnetita de Ryugu revelan que en la superficie poseen una capa de nitruro de hierro (Fe₄N) de varias decenas de nanómetros. El procesado térmico y radiativo que sufrió Ryugu por la meteorización espacial hizo que los elementos volátiles que contienen hierro se liberaran. Sin embargo, el nitrógeno quedó retenido en esa fina capa exterior.

Ese es un mecanismo eficaz para que el nitrógeno se fije en los materiales que vagan por el espacio, tendiendo a enriquecerse en ese elemento a lo largo de su exposición al medio interplanetario durante miles de millones de años.

El nitruro de hierro observado en la superficie de la magnetita de Ryugu se formó a través de la nitruración del hierro en su exposición a las condiciones del espacio, bañado en nitrógeno y otros volátiles que transporta el viento solar y que se incorporan a la magnetita.

A) Partículas de magnetita de tamaño micrométrico encontradas en las muestras retornadas del asteroide Ryugu. B) Los elementos que la componen: el oxígeno (en rojo), hierro (verde) y silicio (azul). En la imagen derecha vemos el azufre (rojo), nitrógeno (verde) y el magnesio (azul). La superficie de la magnetita posee una capa rica en hierro y nitrógeno. KyotoU/Toru Matsumoto

Y llegó a la Tierra

La incorporación de nitrógeno a los cuerpos menores que surcan el sistema solar permitió la formación de las atmósferas de los planetas rocosos, así como la de los satélites de los planetas gigantes. De hecho, la atmósfera terrestre posee una similitud isotópica fascinante con la del satélite Titán de Saturno.

Estudios recientes confirman que actualmente el flujo de micrometeoritos sobre nuestro planeta es de 5 200 toneladas al año. Obviamente fue mucho mayor en el pasado y, por tanto, la magnitud de esa aportación nos ayuda a comprender la relevancia de estos cuerpos menores, encargados del transporte de volátiles a las regiones internas en donde se formó la Tierra.

Los estudios de Ryugu corroboran asimismo el origen del nitrógeno en cuerpos helados, también deducido del estudio de rocas lunares.

En los primeros tiempos y a gran distancia del Sol se formarían cuerpos helados muy porosos de los que proceden las Partículas de Polvo Interplanetario (conocidas como IDP). Esos materiales irían cayendo hacia el astro rey por la fricción con el gas para ir aportando volátiles al entorno donde se formaron los cóndrulos y, de ellos, los meteoritos llamados condritas, ladrillos constitutivos de la Tierra. Imagen del IDP cortesía de Don Brownlee (NASA). Resto de la imagen Josep M. Trigo (CSIC-IEEC)

Esos micrometeoritos, bañados en el viento solar, incorporaron el nitrógeno de cuerpos helados del sistema solar exterior. Fueron ellos los responsables del transporte de nitrógeno a la región cercana a la Tierra, tanto en los primeros días de nuestro sistema solar como en la actualidad.

De ese nitrógeno procede la atmósfera, la vida y nuestra propia esencia, en forma de bases nitrogenadas que forman los nucleótidos de nuestro ADN.

Want to write?

Write an article and join a growing community of more than 182,600 academics and researchers from 4,945 institutions.

Register now