Tara Murphy, University of Sydney; Eric Thrane, Monash University, and Qi Chu, The University of Western Australia
The signal came in on ANZAC Day, ripples in space-time from the merger of two neutron stars an estimated 500-million light years away. But where it happened is still a mystery.
Ripples in space-time caused by massive events such this artist rendition of a pair of merging neutron stars.
Carl Knox, OzGrav
More ripples in space-time have been detected from merging pairs of black holes, one of which was the most massive and distant gravitational-wave source ever observed.
Illustration of hot, dense, expanding cloud of debris stripped from the neutron stars just before they collided.
NASA's Goddard Space Flight Center/CI Lab
Until the recent observation of merging neutron stars, how the heaviest elements come to be was a mystery. But their fingerprints are all over this cosmic collision.
Supercomputer simulation of a pair of neutron stars colliding.
NASA/AEI/ZIB/M. Koppitz and L. Rezzolla
A LIGO team member describes how the detection of a gravitational wave from a new source – merging neutron stars – vaults astronomy into a new era of ‘multi-messenger’ observations.
Simulation of two neutron stars merging.
NASA/AEI/ZIB/M. Koppitz and L. Rezzolla
The gravitational wave itself is the least exciting part of the announcement from LIGO and Virgo. Observing this new source answers many longstanding questions.
Artist’s illustration of two merging neutron stars.
National Science Foundation/LIGO/Sonoma State University/A. Simonnet.
The discovery of tiny ripples in space from the violent collision of dense stars could help solve many mysteries – including where the gold in our jewellery comes from.
New research shows that as few as ten further detections of gravitational waves will help scientists know for sure how pairs of black holes form.
A simulation of the latest binary black hole merger detected by LIGO. Blue indicates weak fields and yellow indicates strong fields.
Numerical-relativistic Simulation: S Ossokine, A Buonanno (Max Planck Institute for Gravitational Physics) and the Simulating eXtreme Spacetime project Scientific Visualization: T Dietrich (Max Planck Institute for Gravitational Physics), R Haas (NCSA)
Scientists have made a third detection of gravitational waves, again caused by the merger of two black holes. But they think there’s something different about the black holes in this case.
Artist’s conception of two merging black holes, spinning in a nonaligned fashion.
LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
These ripples in the very fabric of the universe were hypothesized by Einstein a century ago. Now scientists have detected them for the third time in a year and a half – ushering in a new era in astrophysics.
Gravitational waves are produced by some of the most extreme events in the universe.
NASA/SXS Lensing
The OzGRav Centre of Excellence for Gravitational Wave Discovery will enable Australian researchers to be at the forefront of gravitational wave astronomy.
An illustration showing the merger of two black holes and the gravitational waves that ripple outward.
LIGO/T. Pyle
The observation of gravitational waves from a second black hole merger implies there are many more black holes in the universe than scientists had previously anticipated.
Children are natural scientists. They learn from their mistakes, then try something new.
Shutterstock
Scientific advances – including the recent discovery of gravitational waves – force us to deal with numbers so extreme they’re virtually inconceivable.
A needle in a haystack? Pan Starrs telescope is scanning billions of galaxies to find the black holes emitting gravitational waves.